Saldatura e Taglio.

L’utilizzo dell’azoto nei processi di saldatura in ambiente inertizzato è sempre stato un tema dibattuto sin dalla sua introduzione, vuoi per la difficoltà di dimostrarne il ritorno economico, vuoi per l’alto costo nella gestione quotidiana e nell’investimento dei sistemi. Poco utilizzato in saldatura a onda, ha trovato la sua applicazione maggiore nella saldatura per rifusione e oggi nella saldatura selettiva. Le ragioni che hanno portato a puntare sull’azoto sono dovute alla sua relativa economicità e al fatto che non reagisce con le superfici metalliche per formare superfici non saldabili.

Laser
Plasma
TIG

La Saldatura TIG (Tungsten Inert Gas) è un procedimento di saldatura ad arco con elettrodo infusibile (di tungsteno), sotto protezione di gas inerte, che può essere eseguito con o senza metallo di apporto. La saldatura TIG è uno dei metodi più diffusi, fornisce giunti di elevata qualità, ma richiede operatori altamente specializzati.
Il procedimento si basa su una torcia in cui è inserito l’elettrodo in tungsteno, attorno a cui fluisce il gas di protezione che, attraverso un bocchello di materiale ceramico, è portato sul bagno di fusione. L’operatore muove la torcia lungo il giunto per spostare il bagno di fusione, mentre, nel caso che sia richiesto materiale d’apporto, contemporaneamente sposta la bacchetta del materiale in modo tale da tenerla costantemente con l’estremità entro l’arco e comunque sotto la protezione del gas. L’attrezzatura per effettuare una saldatura TIG quindi è composta da:

Generatore di corrente (Welding machine).
Torcia.
Elettrodo di tungsteno.(Tungsten electrode)
Bocchello di alimentazione del gas di protezione (Gas passage).
Guaina isolante (Insulating sheath).
Alimentatore elettrico (Electrical conductor).
Supporto elettrodo (Electrode holder).
Bombola del gas di protezione (Inert gas supply).
Eventuale bacchetta di metallo d’apporto.

Uno dei principali vantaggi di questa tecnologia è che l’apporto di materiale nel bagno di saldatura è indipendente dall’apporto termico nella saldatura, a differenza di quanto accade nelle saldature a filo o a elettrodo consumabile. Il procedimento TIG è particolarmente indicato quando devono essere saldati piccoli spessori di materiale, a partire da pochi decimi di mm, tuttavia non è possibile saldare spessori superiori a qualche mm (2-3 mm per gli acciai) con una singola passata (perciò, in generale, non si usa per saldare spessori superiori a 5-6 mm), quindi, considerando la bassa produttività, spesso viene usato per effettuare la prima passata di un giunto, mentre il riempimento viene effettuato successivamente con procedimenti a produttività più elevata. Date le sue caratteristiche il procedimento può essere utilizzato in qualsiasi posizione e può essere usato per saldature continue o per saldature a punti. Non è consigliabile l’uso di questo procedimento in luoghi aperti, dato che anche un vento leggero può disperdere il gas di protezione.

Gli elettrodi

Gli elettrodi, dovendo essere di un materiale capace di resistere alle temperature dell’arco elettrico, sono, ormai da molti anni solo in tungsteno o sue leghe, ai primordi di questa tecnologia (anni quaranta) venivano usati anche elettrodi di grafite. Il tungsteno, oltre ad avere caratteristiche termiche meccaniche migliori, è preferito per il suo elevato potere termoelettrico (capacità di emettere elettroni ad elevata temperatura), che stabilizza l’arco. Per aumentare il potere termoelettrico del W, talvolta gli elettrodi sono legati con piccole percentuali (1-2%) di Th (elettrodi toriati).
Gli elettrodi possono essere trovati in commercio a diversi diametri da 0,25 a 6,4 mm. In genere sono utilizzati in corrente continua (cc), polarità diretta (pd), cioè con il polo positivo sul pezzo. L’uso della polarità inversa (pi), cioè con il polo negativo sul pezzo, è utilizzato per la saldatura di metalli leggeri (Al e Mg) o quando è importante la stabilità dell’arco. Tuttavia, dato che la ccpi fornisce meno energia al bagno, quindi richiede correnti d’arco più elevate, spesso è preferibile sostituirla con la saldatura in corrente alternata (ca), che può essere simmetrica o dissimmetrica.
L’elettrodo, prima di essere utilizzato in ccpd, deve essere affilato perché la punta assuma una forma conica, con un’altezza del cono circa 1,5 volte il diametro, in questo modo si aumenta la sua capacità di emettere elettroni, quindi si ottiene un buon riscaldamento del bagno anche con correnti relativamente basse. Invece in ccpi si deve tendere a far assumere all’elettrodo una forma piatta (e, naturalmente, per questi usi si evita di usare elettrodi toriati), proprio per limitare l’emissione di elettroni, che richiederebbero una maggiore tensione a parità di corrente d’arco.

I gas di protezione

Generalmente il gas di protezione viene immesso su entrambe le facce del giunto (naturalmente se questo è accessibile su entrambi i lati), mentre sulla faccia dove si trova il bagno (al dritto) il gas è portato direttamente dalla torcia, sull’altra faccia (al rovescio) viene insufflato in condizioni controllate, in modo da assicurare una protezione dall’ossidazione anche alla radice della saldatura.
I gas usati più comunemente sono Ar o He, usati separatamente o in miscele. In alcune applicazioni speciali vengono usate miscele di Ar con H2. In genere si preferisce Ar puro alle altre soluzioni, per i seguenti vantaggi:

Favorisce la stabilità dell’arco.
Pulizia della superficie su metalli leggeri (Al e Mg).
Costo relativamente basso.
Richiede portate più basse per fornire la stessa schermatura.
Penetrazione ridotta (particolarmente utile in saldatura manuale su bassi spessori).

L’He viene utilizzato per la saldatura di lamiere di forte spessore (maggiore conducibilità termica, quindi maggiore penetrazione), viene usato in miscela con l’Ar per bilanciare le caratteristiche dei due gas.
L’uso di H2 in miscela con Ar è limitato agli acciai austenitici ed alle leghe a base di Ni, a causa dei danni metallurgici che potrebbe portare agli acciai ferritici (cricche a freddo). La presenza di H2 nel gas di protezione aumenta l’energia trasferita dall’arco nel materiale da saldare, inoltre l’H2 agisce come materiale riducente, inibendo la formazione di ossidi e quindi lasciando superfici di saldatura molto pulite. Per questi motivi viene usato (quasi esclusivamente in saldatura automatica) per saldatura di tubi per impianti chimici o nucleari o di tubi a piastre tubiere.
Le portate di gas di protezione devono essere stabilite dal tecnico di saldatura, basandosi soprattutto sulla propria esperienza e su prove finalizzate al particolare lavoro ed alla particolare geometria.

La saldatura MIG (Metal-arc Inert Gas) o MAG (Metal-arc Active Gas) (l’unica differenza fra le due è il gas che viene usato per la protezione del bagno di saldatura) è un procedimento di saldatura sviluppato dopo la Seconda Guerra Mondiale che ha assunto un peso, in termini di prodotto saldato per anno, sempre crescente. Uno dei principali motivi che hanno permesso questo sviluppo è stata la riduzione dei costi dei prodotti di elettronica, per cui sono state sviluppate macchine per saldatura semiautomatiche a costi accessibili anche per ditte di dimensioni medio-piccole.

Linee generali del procedimento

Il procedimento di saldatura MIG/MAG è un procedimento a filo continuo in cui la protezione del bagno di saldatura è assicurata da un gas di copertura, che fluisce dalla torcia sul pezzo da saldare. Il fatto che sia un procedimento a filo continuo garantisce un’elevata produttività al procedimento stesso, e contemporaneamente la presenza di gas permette di operare senza scoria (entrambe queste caratteristiche aumentano l’economicità del procedimento nei confronti della saldatura a elettrodo). D’altra parte una postazione per saldatura MIG/MAG è necessariamente composta dai seguenti componenti:

Torcia con duplice funzione: far scoccare l’arco fra il filo ed il pezzo e portare il gas di protezione sul bagno di saldatura.
Pezzo da saldare.
Generatore di corrente d’arco (nelle macchine moderne il controllo della caratteristica d’arco è effettuato elettronicamente).
Meccanismo di avanzamento e controllo del filo.
Aspo avvolgifilo.
Bombola del gas di protezione.

La saldatura MIG/MAG, come tutti i procedimenti a filo continuo, è un procedimento derivato dall’arco sommerso, ma, nei confronti quest’ultimo, ha il vantaggio che l’operatore può tenere l’arco sotto osservazione diretta, quindi può controllare l’esecuzione della saldatura come nei procedimenti a elettrodo (elettrodo rivestito e TIG), altri vantaggi nei confronti dell’arco sommerso sono la mancata formazione di scoria e la possibilità di saldare anche in posizioni non piane.

I gas di protezione

Il gas di protezione ha la funzione di impedire il contatto del bagno di fusione con l’atmosfera, quindi deve essere portato sul bagno di fusione direttamente dalla torcia.
I gas di protezione inerti più utilizzati sono Ar ed He, entrambi sono gas monoatomici inerti, ma, mentre l’Ar è più pesante dell’aria, quindi stagna sul bagno di fusione, garantendo una maggiore protezione, l’He è più leggero dell’aria, quindi fornisce una protezione minore, tuttavia, avendo una conduttività termica circa 10 volte quella dell’Ar, permette una penetrazione della saldatura maggiore. Per questo motivo l’utilizzo di He è limitato a giunti di elevato spessore o a materiali aventi elevata conducibilità termica (Cu o Al).
Invece i gas attivi sono generalmente miscele di Ar e CO2, con l’anidride carbonica che, in casi estremi, sostituisce l’Ar (comunque raramente viene usata in percentuale superiore al 25%). La presenza di CO2 aumenta la stabilità di posizionamento dell’arco su materiali ferromagnetici (acciai al carbonio o bassolegati). Inoltre la presenza di gas attivo permette una maggiore penetrazione del giunto. D’altra parte la presenza di CO2 provoca un aumento della corrente necessaria per avere un trasferimento di metallo a spruzzo fra il filo ed il bagno, aumenta gli schizzi (spatter) e diminuisce la stabilità elettrica dell’arco. Quindi per poter usare gas attivi con trasferimento a spruzzo, generalmente si utilizza una corrente pulsata, cioè una corrente che presenta picchi di intensità di durata e frequenza prestabilite, per avere un’immissione di energia continua, ma il distacco della goccia metallica solo durante la fase ad alta intensità di corrente.

Applicazioni della saldatura MIG/MAG

La saldatura MIG/MAG viene utilizzata quando è richiesta un’alta produttività ed una sufficiente flessibilità di impiego. Con questa tecnologia è possibile saldare acciai sia austenitici sia ferritici, leghe di metalli leggeri (Al e Mg), leghe di rame, leghe di nickel e leghe di titanio. Poiché la protezione del bagno di saldatura è assicurata da un flusso di gas, questo procedimento è consigliato solo in officina, dato che, in cantiere, basta un vento moderato a disperdere il flusso di gas di protezione, con conseguente riduzione della qualità del giunto saldato. Questa tecnologia può essere usata senza difficoltà per produrre imburraggi (deposizione di uno strato di materiale su un materiale diverso) o per riparazioni.

Nella saldatura a plasma, la torcia utilizzata presenta al centro di essa l’elettrodo di tungsteno, il quale è infusibile durante il processo. Intorno a tale elettrodo giunge un gas plasmogenico che, in presenza del campo elettrico presente esternamente o internamente alla torcia, diventa plasma, cioè gas fortemente ionizzato.
La caratteristica fondamentale del plasma (che rende tale tecnica di saldatura molto spesso utilizzata dati i bassi costi e le alte prestazioni) è che riesce a catturare un’enorme quantità di calore e a trasportarla sul getto da fondere. Condizione necessaria affinché ciò si verifichi è che il plasma deve arrivare in forma concentrata sul pezzo, cosa resa possibile utilizzando un’opportuna distanza dal pezzo e una velocità di fuoriuscita del gas abbastanza elevata. In queste applicazioni la temperatura può arrivare, nei casi più severi, a ordini di grandezza dei 20.000 °C, cosa impensabile per altre operazioni di saldatura: è proprio questa elevata temperatura responsabile dell’alta precisione e velocità di realizzazione di tali operazioni. Per prevenire soffiature nella parte saldata (cosa che inevitabilmente si verifica per ogni tipo di saldatura, in quanto per la Legge di Henry la solubilità di un gas è funzione della temperatura) intorno alla torcia si usa un sistema che permette il rilascio di gas particolari (di solito miscele di gas nobili) che avendo solubilità praticamente nulla anche ad alte temperature, non danno modo ai gas atmosferici di penetrare nel bagno del metallo fuso.

MIG/MAG

Principali vantaggi:

Diminuzione dei ponti fra le saldature.
Diminuzioni del numero di saldature insufficienti.
Maggiore resistenza meccanica delle giunture.
Drastica riduzione della produzione di scorie.
Diminuzione della manutenzione e della pulizia del crogiolo.